110 年特種考試地方政府公務人員考試試題

別:三等考試 科:機械工程 科 目:熱力學

- 一、卡車上載一輛 1,500 公斤 (kg) 的故障轎車,如忽略摩擦力、空氣阻力和滾動摩擦,請考量 下列行駛情形,分別計算運載此轎車後,卡車所增加之功率需求(extra power required): (每小題 5 分, 共 15 分)
 - (一) 以等速度(constant velocity) 在水平的路上行駛。
 - □ 以時速 60 公里/時 (60 km/h),在與水平面成 30 度夾角之上坡路上行駛。
 - (三) 在水平的路上,於 10 秒鐘由靜止加速到 100 公里/時。

【解題關鍵】

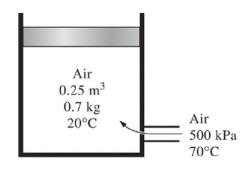
- 1. 《考題難易》★★★
- 2. 《破題關鍵》功及其表示式之應用
- 3.《使用法條》or《使用學說》熱力學之基本觀念與定義

【擬答】

 $\dot{W}_{total} = \dot{W}_a + \dot{W}_g = 0$ $\dot{W}_{total} = \dot{W}_a + \dot{W}_g$, 其中 $\dot{W}_a = 0$

$$\therefore \ \dot{W}_{total} = \dot{W}_g = \frac{mg(z_2 - z_1)}{\Delta t} = mg\frac{\Delta z}{\Delta t} = mgV_z = mgV \sin 30^\circ$$

数
$$\dot{W}_{total} = 1500 \times 9.81 \times \left(\frac{60 \times 10^3}{3600}\right) \sin 30^\circ = 122625(w) = 122.63(kw)$$


 (Ξ)

$$\dot{\vec{W}}_{total} = \dot{\vec{W}}_a + \dot{\vec{W}}_g \quad , \quad \not \sqsubseteq \psi \quad \dot{\vec{W}}_g = 0 \quad , \quad \not \boxtimes \dot{\vec{W}}_{total} = \dot{\vec{W}}_a = \frac{\frac{1}{2} m \left(V_2^2 - V_1^2\right)}{\Delta t}$$

$$\therefore \dot{W}_{total} = \frac{\frac{1}{2} \times 1500 \times \left[\left(\frac{100 \times 10^3}{3600} \right)^2 - 0 \right]}{10} = 578700 (w) = 578.7 (kw)$$

二、如圖所示為一體積 0.25 m³ 的絕熱活塞汽缸裝置 (adiabatic piston-cylinderdevice) ,開始時其 內部有 0.7 kg 的 20℃空氣,且活塞可自由移動(free move);令壓縮空氣(壓力和溫度固 定為 500 kPa 與 70℃)進入此活塞系統,直到這系統之體積增加 50%,且溫度達到 35℃。 假設定壓比熱 $(c_p = 1.005 \text{ kJ/kg·K})$ 為定值且空氣之氣體常數 $R_{air} = 0.287 \text{ kJ/kg·K}$,請計算下 列問題:

- (一) 進入此活塞系統的質量。(5分)
- (二)活塞汽缸系統所做的功。(5分)
- (三) 此過程中熵的變化量。(10分)

【解題關鍵】

- 1.《考題難易》★★★
- 2. 《破題關鍵》理想氣體狀態方程式、質量守恆、邊界功、熵增加原理公式之應用
- 3. 《使用法條》or 《使用學說》理想氣體、熱力學第一定律、熵增加原理

【擬答】

:.
$$m_1 + m_i = m_2 \Rightarrow m_i = m_2 - m_1 = 0.3(kg)$$
 by

$$(\Box)W_{b,out} = P_1(\forall_2 - \forall_1) = 29.43(kJ) \circ$$

$$(\Xi) S_{gen} = \Delta S_{sys} + \Delta S_{surr} = m_2 s_2 - m_1 s_1 - m_i s_i = m_2 s_2 - m_1 s_1 - (m_2 - m_1) s_i$$

$$\therefore S_{gen} = m_2(s_2 - s_i) - m_1(s_1 - s_i) = m_2 \left(c_p \ln \frac{T_2}{T_i} - R \ln \frac{P_2}{P_i}\right) - m_1 \left(c_p \ln \frac{T_1}{T_i} - R \ln \frac{P_1}{P_i}\right)$$

故
$$S_{gen} = 0.0675(kJ/K)$$

三、熱力性質關係中的交互或相互關係(reciprocity relations),常被應用來連結量熱狀態方程 [caloric equation of state , u = u(v,T)或 h = h(p,T)] 與熱狀態方程 [thermal equation of state , p = p(v,T)],針對內能(internal energy)和焓(enthalpy)此關係有兩個形式:

$$\left(\frac{\partial u}{\partial v}\right)_T = T\left(\frac{\partial p}{\partial T}\right)_v - p \left(\frac{\partial h}{\partial p}\right)_T = v - T\left(\frac{\partial v}{\partial T}\right)_p$$

- (一請利用內能表示為體積與溫度之函數[u=u (v, T)],以及 Tds 關係或稱為吉布斯方程 (Gibbs equation) 推導出 $\left(\frac{\partial u}{\partial v}\right)_T = T\left(\frac{\partial p}{\partial T}\right)_n p$
- (二)請利用理想氣體方程與上述交互關係式,證明理想氣體之內能和焓僅是溫度函數。(10分)

共9頁 第2頁

【解題關鍵】

- 1. 《考題難易》★★★★
- 2. 《破題關鍵》簡單可壓縮系統之內能、焓變化關係式
- 3.《使用法條》or《使用學說》熱力性質關係式

【擬答】

擬答】
$$() u = u(T,v) \Rightarrow e \% 分 可得 du = \left(\frac{\partial u}{\partial T} \right)_v dT + \left(\frac{\partial u}{\partial v} \right)_T dv , \\ \dot{H} + C_v = \left(\frac{\partial u}{\partial T} \right)_v \\ \dot{L} u = C_v dT + \left(\frac{\partial u}{\partial v} \right)_T dv \cdots (1) \\ s = s(T,V) \Rightarrow e \% 分 可得 ds = \left(\frac{\partial s}{\partial T} \right)_v dT + \left(\frac{\partial s}{\partial v} \right)_T dv , \\ \dot{H} + \left(\frac{\partial s}{\partial v} \right)_T dv , \\ \dot{H} + \left(\frac{\partial s}{\partial v} \right)_T dv + \left(\frac{\partial s}{\partial v} \right)_T dv + \left(\frac{\partial s}{\partial v} \right)_T dv , \\ \dot{H} + \left(\frac{\partial s}{\partial v} \right)_T dv + \left(\frac{\partial s}{\partial v} \right)$$

理想氣體 $P = \frac{RT}{v}$,則 $\begin{cases} \left(\frac{\partial P}{\partial T}\right)_v = \frac{R}{v} \\ \left(\frac{\partial^2 P}{\partial T^2}\right) = \left[\frac{\partial \left(R/v\right)}{\partial T}\right] = 0 \end{cases}$,故 $\left(\frac{\partial C_v}{\partial v}\right)_T = 0$

上式說明了 C_{v} 不隨比容而變化,即 C_{v} 不為比容之函數。故由以上分析可知,理想氣體之內能 僅為溫度的函數。

同理:

$$dh = C_P dT + \left[v - T \left(\frac{\partial v}{\partial T} \right)_P \right] dP$$

理想氣體
$$v = \frac{RT}{P}$$
,則 $v - T\left(\frac{\partial v}{\partial T}\right)_P = v - T\left(\frac{R}{P}\right) = v - v = 0$,故 $dh = C_P dT$

為了完成證明,須證明 $_{C_{p}}$ 亦非 $_{P}$ 之函數。由於 $_{ds} = \frac{C_{p}}{T}dT - \left(\frac{\partial v}{\partial T}\right)_{p}dP$ 此式為恰當微分,故

$$\frac{\partial}{\partial P} \left(\frac{C_P}{T} \right)_T = \frac{\partial}{\partial T} \left[\left(\frac{\partial v}{\partial T} \right)_P \right]_P \Rightarrow \frac{1}{T} \left(\frac{\partial C_P}{\partial P} \right)_T = \left(\frac{\partial^2 v}{\partial T^2} \right)_P \Rightarrow \left(\frac{\partial C_P}{\partial P} \right)_T = T \left(\frac{\partial^2 v}{\partial T^2} \right)_P$$

理想氣體
$$v = \frac{RT}{P}$$
,則
$$\left\{ \left(\frac{\partial v}{\partial T} \right)_P = \frac{R}{P} \right\}$$

$$\left\{ \left(\frac{\partial^2 v}{\partial T^2} \right)_P = \left[\frac{\partial \left(R/P \right)}{\partial T} \right]_P = 0 \right.$$

$$\left\{ \left(\frac{\partial C_P}{\partial P} \right)_T = 0 \right\}$$

上式說明了 C_p 不隨壓力而變化,即 C_p 不為壓力之函數。故由以上分析可知,理想氣體之焓僅為溫度的函數。

四、回答下列各小題: (每小題 5 分, 共 25 分)

- (-) 請寫出提升朗肯循環(Rankine cycle)效率之任何兩種方法,並用溫度-熵(T-s)圖說明這些對蒸汽乾度(quality)的影響。
- \Box 請寫出為何卡諾循環(Carnot cycle)不適合用來分析實際蒸汽發電廠(steam power plant)的理由,並用溫度-熵(T-s)圖說明之。
- (三) 何謂複合式循環 (combined power cycle) 之發電系統 (power plant) ?請用溫度-熵 (T-s) 圖說明之,並寫出其特性和設計目的。
- 四何謂回熱 (regeneration) 與汽電共生 (cogeneration) ?試說明兩者之不同點。
- 伍)何謂級聯合冷凍系統(cascade refrigeration system)?試說明其優點與缺點。

【解題關鍵】

- 1. 《考題難易》★★★★
- 2. 《破題關鍵》卡諾蒸汽循環、朗肯循環、汽電共生、複合循環及級聯合冷凍系統之應用
- 3. 《使用法條》or 《使用學說》蒸氣與複合動力循環、冷凍循環

【擬答】

(-)

1. 降低冷凝器壓力 $(P_4 \to P_4')$:如圖 1 所示,降低冷凝器壓力會增加水蒸氣在渦輪機出口的水分含量。

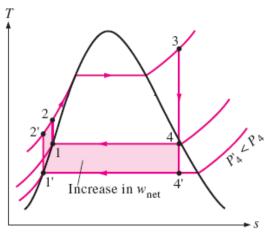


圖1降低冷凝器壓力以提高熱效率

(110 地方政府特考) 公職王歷屆試題

2.將水蒸氣過熱至高溫 $(T_3 o T_3')$:如圖 2 所示,將水蒸氣過熱至高溫會減少水蒸氣在渦輪機 出口的水分含量。

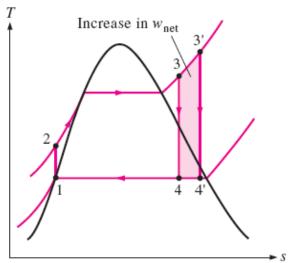


圖 2 將水蒸氣過熱至高溫以提高熱效率

 (\Box)

- 1. 將熱傳遞過程限制於兩相系統,則限制了循環可使用之最高溫度,同時也限制了熱效率。 若欲提高循環之最高溫度,則會涉及單相工作流體之熱傳遞,實際上不易在等溫過程中達 成。
- 2.如圖 3(a)之T-s圖所示,在過程 2-3 中,渦輪機因含水量高之水蒸氣,將會侵蝕渦輪機葉 片而導致磨耗。
- 3.在過程 4-1 中,涉及液-氣混合物至飽和液體之壓縮。此過程有兩個困難之處。第一、不易 精確地控制凝結過程,以使其結束於狀態 4 所希望之乾度。第二、設計處理兩相之壓縮機 是不切實際的。
- 4. 若使卡諾蒸氣循環以不同之方式進行,則可消除一部分之問題,如圖 3(b)所示。但該循環 仍會呈現其他問題,例如等熵壓縮至極高之壓力以及在可變壓力下之等溫熱傳遞。 由以上之分析可知,卡諾蒸氣循環無法接近實際裝置,對蒸氣動力循環而言,並非實際可 行之模式。

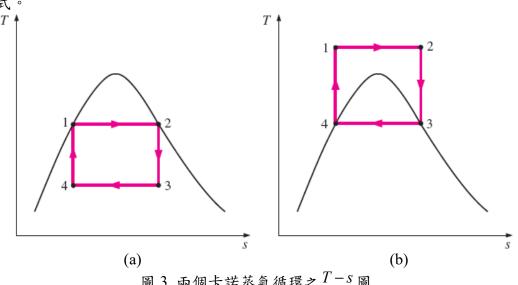
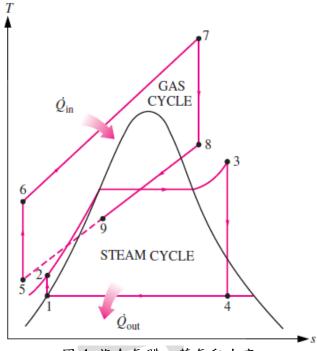


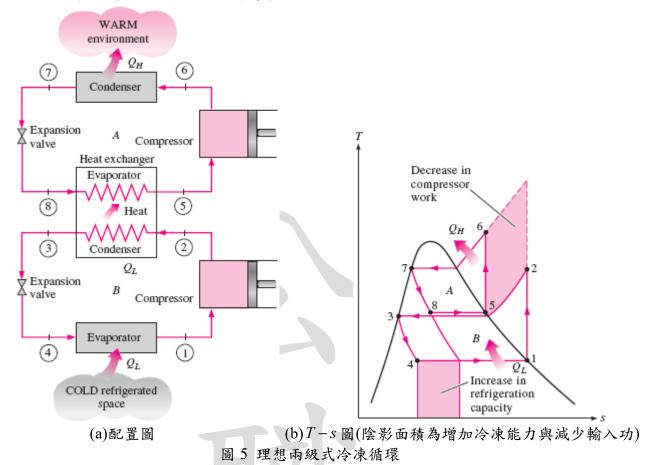
圖 3 兩個卡諾蒸氣循環之T-s 圖

 (Ξ)

- 1.為追求更高之熱效率,將傳統蒸氣動力廠進行創新修正,即在蒸氣動力循環(如蒸氣渦輪機 (朗肯)循環)上加一個氣體動力循環(如燃氣渦輪機(布雷登)循環),稱為複合氣體-蒸氣循環 (combined gas-vapor cycle)或簡稱複合循環(combined cycle)。
- 2.利用高溫下之燃氣輪機循環特性,以高溫排氣做為下方循環(例如蒸氣動力循環)之能源, 即產生複合氣體-蒸氣循環。此循環在經濟上極具吸引力,除了可提高熱效率外,又不會 增加太多設備成本。

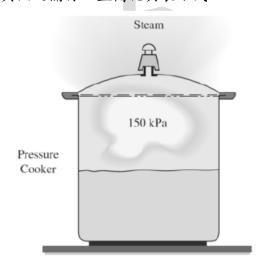
共9頁 第5頁 全國最大公教職網站 https://www.public.com.tw




圖 4 複合氣體-蒸氣動力廠

(四)

- 1.理想回熱(或稱再生)朗肯循環:蒸氣動力廠之實際再生過程,是藉由在不同點從渦輪機抽出或供應水蒸氣而達成。此水蒸氣在渦輪機內進一步膨脹可產生更多的功,並用以對飼水加熱。以再生方式將飼水加熱之裝置稱為再生器(regenerator)或飼水加熱器 feed(water heater, FWH)。
- 2.汽電共生:由於使用大量製程熱之工業會消耗大量電力,基於經濟及工程上之考量,若使用現存之可用能以產生動力(電力),同時又能滿足某些工業製程熱需求之動力廠,即稱為汽電共生廠。一般而言,汽電共生(cogeneration)能從相同之能源產生一種以上有用形式之能量(例如製程熱與電力)。
- 3. 兩者之不同點:理想汽電共生廠其最大特色就是不需冷凝器,故沒有廢熱排出。因此,在 鍋爐中所有傳至水蒸氣之能量,均可做為製程熱或電力。


(五)級聯合冷凍系統(cascade refrigeration system):

- 1.亦稱串接式冷凍系統或分級式系統,即是將兩個或兩個以上之個別冷凍循環串接而成,如 圖 5 所示為兩級式冷凍循環,若為三級式系統則將其下方再配置另一循環。
- 2. 優點:可降低輸入功,增加冷凍容量,提升 COP 值。
- 3. 缺點:須注意兩個獨立操作系統須保持一些溫度差,以利循環串接處之熱交換。

- 五、如圖所示之 6 公升的壓力鍋,鍋裡剛開始時有 1.5 公斤的水,於達到操作壓力 150 kPa 後,持續 30 分鐘加入 600 瓦熱量於壓力鍋中,假設大氣壓力為 100 kPa,請參考所附飽和水(saturated water)性質表,回答下列問題:(每小題 5 分,共 20 分)

 - □ 寫出加熱 30 分鐘後之剩餘水質量 (m2) 與乾度 (quality, x2) 的關係式。
 - (三) 寫出加熱 30 分鐘後之剩餘水的內能 (u2) 與乾度 (quality, x2) 之關係式。
 - 四 於能量守恆式帶入(二)與(三)之關係,並簡化其表示式。

Saturated water—Pressure table

		Specific volume, m³/kg		Internal energy, kJ/kg			Enthalpy, kJ/kg			Entropy, kJ/kg · K		
Press., P kPa	Sat. temp., T _{sat} C	Sat. liquid, <i>v_f</i>	Sat. vapor, v _g	Sat. liquid, u_f	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, h _f	Evap., h_{fg}	Sat. vapor, h_g	Sat. liquid, s _f	Evap., <i>s_{fg}</i>	Sat. vapor, s _g
1.0	6.97	0.001000	129.19	29.302	2355.2	2384.5	29.303	2484.4	2513.7	0.1059	8.8690	8.9749
1.5	13.02	0.001001	87.964	54.686	2338.1	2392.8	54.688	2470.1	2524.7	0.1956	8.6314	8.8270
2.0	17.50	0.001001	66.990	73.431	2325.5	2398.9	73.433	2459.5	2532.9	0.2606	8.4621	8.7227
2.5	21.08	0.001002	54.242	88.422	2315.4	2403.8	88.424	2451.0	2539.4	0.3118	8.3302	8.6421
3.0	24.08	0.001003	45.654	100.98	2306.9	2407.9	100.98	2443.9	2544.8	0.3543	8.2222	8.5765
4.0	28.96	0.001004	34.791	121.39	2293.1	2414.5	121.39	2432.3	2553.7	0.4224	8.0510	8.4734
5.0	32.87	0.001005	28.185	137.75	2282.1	2419.8	137.75	2423.0	2560.7	0.4762	7.9176	8.3938
7.5	40.29	0.001008	19.233	168.74	2261.1	2429.8	168.75	2405.3	2574.0	0.5763	7.6738	8.2501
10	45.81	0.001010	14.670	191.79	2245.4	2437.2	191.81	2392.1	2583.9	0.6492	7.4996	8.1488
15	53.97	0.001014	10.020	225.93	2222.1	2448.0	225.94	2372.3	2598.3	0.7549	7.2522	8.0071
20	60.06	0.001017	7.6481	251.40	2204.6	2456.0	251.42	2357.5	2608.9	0.8320	7.0752	7.9073
25	64.96	0.001020	6.2034	271.93	2190.4	2462.4	271.96	2345.5	2617.5	0.8932	6.9370	7.8302
30	69.09	0.001022	5.2287	289.24	2178.5	2467.7	289.27	2335.3	2624.6	0.9441	6.8234	7.7675
40	75.86	0.001026	3.9933	317.58	2158.8	2476.3	317.62	2318.4	2636.1	1.0261	6.6430	7.6691
50	81.32	0.001030	3.2403	340.49	2142.7	2483.2	340.54	2304.7	2645.2	1.0912	6.5019	7.5931
75	91.76	0.001037	2.2172	384.36	2111.8	2496.1	384.44	2278.0	2662.4	1.2132	6.2426	7.4558
100	99.61	0.001043	1.6941	417.40	2088.2	2505.6	417.51	2257.5	2675.0	1.3028	6.0562	7.3589
101.325	99.97	0.001043	1.6734	418.95	2087.0	2506.0	419.06	2256.5	2675.6	1.3069	6.0476	7.3545
125	105.97	0.001048	1.3750	444.23	2068.8	2513.0	444.36	2240.6	2684.9	1.3741	5.9100	7.2841
150	111.35	0.001053	1.1594	466.97	2052.3	2519.2	467.13	2226.0	2693.1	1.4337	5.7894	7.2231
175	116.04	0.001057	1.0037	486.82	2037.7	2524.5	487.01	2213.1	2700.2	1.4850	5.6865	7.1716
200	120.21	0.001061	0.88578	504.50	2024.6	2529.1	504.71	2201.6	2706.3	1.5302	5.5968	7.1270
225	123.97	0.001064	0.79329	520.47	2012.7	2533.2	520.71	2191.0	2711.7	1.5706	5.5171	7.0877
250	127.41	0.001067	0.71873	535.08	2001.8	2536.8	535.35	2181.2	2716.5	1.6072	5.4453	7.0525
275	130.58	0.001070	0.65732	548.57	1991.6	2540.1	548.86	2172.0	2720.9	1.6408	5.3800	7.0207

【解題關鍵】

- 1. 《考題難易》★★★★
- 2. 《破題關鍵》乾度、比性質、質量守恆、排放過程能量守恆之應用
- 3. 《使用法條》or 《使用學說》純物質的性質、熱力學第一定律

【擬答】

(一)鍋內之絕對壓力
$$P_{abs} = P_{gage} + P_{atm} = 250(kPa)$$
 ,查表可得 $T = T_{sat@250kPa} = 127.41(^{\circ}C)$ $v_1 = \frac{\forall}{m_1} = 0.004(m^3/kg)$,故 $v_1 = v_f + x_1v_{fg} \Rightarrow x_1 = \frac{v_1 - v_f}{v_{fg}} = 0.00409$ $u_1 = u_f + x_1u_{fg} = 543.27(kJ/kg)$,故 $U_1 = m_1u_1 = 814.91(kJ)$ (二) $m_2 = \frac{\forall}{v_2}$,其中 $v_2 = v_f + x_2v_{fg}$,故 $m_2 = \frac{\forall}{v_f + x_2v_{fg}} = \frac{0.006}{0.001067 + 0.717663x_2}$ (kg) (四) 質量守恆: $m_i - m_e = \Delta m_{system} \Rightarrow m_e = (m_1 - m_2)_{C.\forall.}$ 能量守恆: 此為排放過程,且不作功,忽略動位能變化,故 $Q = m_e h_e + (m_2 u_2 - m_1 u_1)_{C.\forall.} = (m_1 - m_2) h_e + (m_2 u_2 - m_1 u_1)_{C.\forall.}$ 其中 $\begin{cases} Q = Q_{in} \Delta t = 1080(kJ) \\ h_e = h_{g@250kPa} = 2716.5(kJ/kg) \end{cases}$ 將(二)與(三)之關係式代入能量守恆式中即可解得 $x_2 = 0.00683$

共9頁 第8頁

 $\therefore m_2 = \frac{0.000}{0.001067 + 0.717663 \times 0.00683} = 1(kg)$

志光 學儒 保成

|公職+國營

善用重疊考科,一次準備

-年內超過 8 次上榜機會!

初等考

最容易上手的公職考試

關務特考

4月

考科少於同職等考試

鐵路特考

佐級錄取率最高

高普考

主流考試,缺額眾多

調查局特考

地方特考

● 考科同高普考

自來水評價人員

台電考試

●考科少、好準備

中油僱員

○只考2科,多為選擇題

國營事業職員級

錄取率高

電力工程

高考 19.42% 高考 9.04% 普考 17.33% 普考 9.39% 機械工程

高考 18.27% 普考 13.70%

高考 12.92% 普考 10.47%

跟著我們一起在志光 學儒 保成 找到屬於工科人的工頂人生

選對好老師,中年轉職好順利!

我遭遇公司裁員,覺得公職夠穩定,決定踏上國考之路。隔了20 幾年重拾書本,選擇好的補習班讓我事半功倍。熱力學老師跟流 體力學老師,我非常推崇,只要照著老師講的記下來、寫下來, 這樣就夠了。

1年考取 古〇芳 109年高考機械工程

專業名師指導,提升解題順暢度!

本以為適合闖蕩,但發現穩定的生活才是我想要的。老師的教材 都有明確分析與統整,再加上會由老師出申論題讓考生做練習, 增加寫題目的敏感及順暢度。考前還有總複習課程,精準預測範 圍、統整考前重點。

全國探花 李〇庭 109年鐵路員級機械工程

為你設計的學習模式,讓你靈活學習、輕鬆準備!

面授學習 直接,有效

- ▲面對面教學,現場解決疑惑
- ▲專業名師統整、分析考試重點
- ▲定期測驗,隨時檢視學習效果

雲端函授 自主,彈性

- ▲不再煩惱通勤,教材直接送到家
- ▲ 反覆聽課,不怕觀念聽不懂
- ▲完全自由,自主安排學習進度

- ▲安靜舒適上課環境,提高專注力
- ▲看課時間自由預約,不必擔心時間衝突
- ▲可暫停、倒轉或快轉,深度學習超簡單