(111 初等考) 公職王歷屆試題

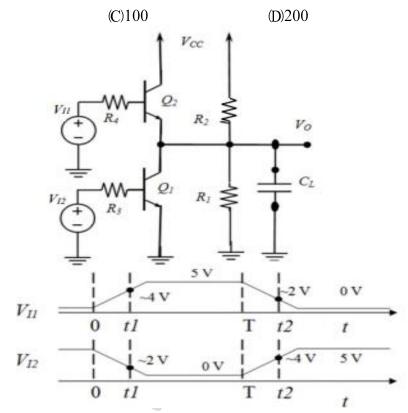
111 年公務人員初等考試試題

等 別:初等考試 類 科:電子工程 科 目:電子學大意

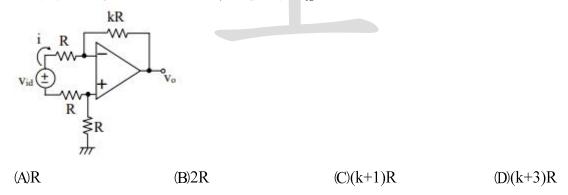
(B) 1. 某增強型 NMOS 場效電晶體的 $V_t=1$ $V \cdot \mu n C_{ox}(W/L)=50$ $\mu A/V^2$,今若其電壓 $V_{GS}=2$ V, 則其轉導 gm (Transconductance) 為若干 μA/V?

(A)25

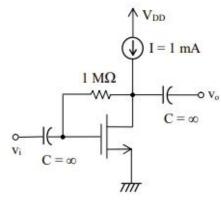
(B)50


(C) 2. 有一矽雙極性接面電晶 體(Si-BJT)電路及輸入 接腳 V_{II} 、 V_{I2} 的電壓波形 如下所示, $V_{CC} = 5 \text{ V}$, $R_1 = R_2 = 1 \text{ k}\Omega$, $R_3 = R_4 =$ 100Ω , $C_L = 5 \mu F$,電晶 體電流增益 $\beta_{O1} = \beta_{O2} =$ 100。試研判輸出接腳 Vo 在低準位輸出 (VO@LO) 時最可能的 工作電壓:

(A) V_O @ LO < 0 V


(B) V_O @ LO = 0 V

(C)0.4 V > V_O @ LO > 0 V


(D) V_O @ LO > 0.4 V

- (B) 3. 對於一個 PN 接面二極體在逆偏 (reverse bias) 的條件下,下列何者正確?
 - (A)外部電壓之正端接於 P 側,負端接於 N 側
 - (B)P 側的電子將會流向 N 側,N 側的電洞則流向 P 側
 - (C)當逆偏壓加大時,因空乏區 (depletion region) 擴大而導致電容也變大
 - (D)接面空乏區內電場的方向為由 P 側指向 N 側
- (B) 4. 如圖所示之電路, OP AMP 為理想。求 v_{id}/i:

(B) 5. 如圖所示為一 NMOS 構成的放大器。 $V_{DD}=3~V$,電晶體之小信號 $\mu_n C_{ox}=200~\mu A/V^2$, W/L=10, $V_t=0.5~V$ 。電流源非完全理想,有一值為 $20~k\Omega$ 的內阻。求小信號增益 v_o/v_i :

(A)-20

(B)-40

(C)-100

(D)-1000

- (A) 6. 雙極性電晶體接成共集極組態時,其輸出阻抗相較於共射極和共基極組態的輸出阻抗為何? (A)最低 (B)最高 (C)次高 (D)一樣
- (B) 7. 下列何種矽電晶體具有常閉型通道?

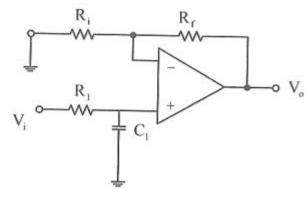
(A)PN 接面型場效電晶體

(B)MOS 增強型場效電晶體

(C)MOS 空乏型場效電晶體

(D)雙極性接面電晶體

(B) 8. 有一半波整流器的輸入電壓峰值為 10 V,則其輸出電壓的峰值大約為:


(A)10.7 V

(B)9.3 V

(C)5 V

(D)3.2 V

- (A) 9. 有一增益為 A=10000,單極頻率(single pole frequency)為 10^5 rad/s 之放大器,將其置入回饋因素(feedback factor)f=0.01 的回饋迴路,設回饋過程不影響此放大器的開迴路增益(open loop gain),則此放大器之開迴路單一增益頻率(unit gain frequency)為: $(A)10^9$ rad/s $(B)10^5$ rad/s $(C)10^3$ rad/s $(D)10^2$ rad/s
- (C) 10. 如圖所示電路為一階主動低通濾波器,若 $R_i = 20 \text{ k}\Omega$, $R_f = 200 \text{ k}\Omega$, $R_1 = 1.5 \text{ k}\Omega$, $C_1 = 0.02 \mu F$,則此電路的截止頻率 f_{CH} 為多少?

(A)5.3 GHz

(B)5.3 MHz

(C)5.3 kHz

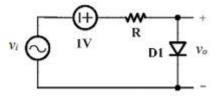
(D)5.3 Hz

(D) II. 有一 N 通道接面場效電晶體(JFET)的夾止電壓 $V_P = -4 \, V$,且源極電壓 $V_S = 0 \, V$,則下列那一個 條件可使此 JFET 工作於飽和區?

 $(A)V_G = -5 \text{ V}, V_D = 1 \text{ V}$

(B) $V_G = -2 V$, $V_D = 1 V$

 $(C)V_G = 0 V, V_D = 0 V$

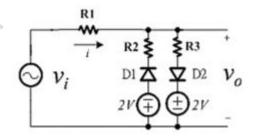

(D) $V_G = 0 \text{ V}, V_D = 5 \text{ V}$

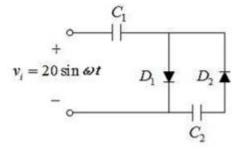
- (C) 12. 關於 BJT 電晶體之敘述,下列何者正確?
 - (A)電晶體操作在飽和 (saturation) 區時之轉導值 (transconductance) 較操作於順向主動 區 (forward active region) 時為大
 - (B)電晶體操作在飽和區時之輸出阻抗 r。較操作於順向主動區時為大

- (C)操作於放大器模式時,基集極接面應避免順向偏壓
- (D)電晶體操作在截止(cutoff) 區時,基射極接面必為順向偏壓
- (B) 13. 橋式全波整流電路的輸入信號:vi(t) = 18sin(377t) 伏特。其輸出信號之頻率為何?
 - (A)60 Hz
- (B)120 Hz
- (C)377 Hz
- (D)754 Hz

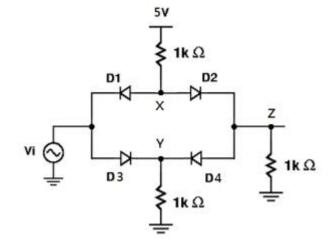
(D)-2.7 V

(C) 14. 下圖電路中二極體 D1 之導通電壓為 0.7 V , 導通電阻為 0Ω 。電阻值 $R = 10 \Omega$ 。若 $vi(t) = 3 \sin 10t$ 伏特。則 vo(t)的最小值為何?

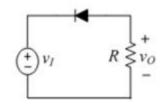


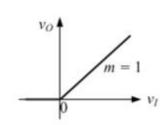

(A)4V

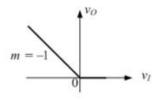
(B)2V

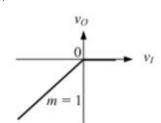

(C)-2V

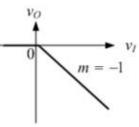
- (C) 15. 下圖中二極體 D1 與 D2 之導通電壓為 0.7 V, 導通電阻為 0Ω , 輸入信號為弦波, $vi(t) = 4 \sin 10t$ 伏特, R1, R2, R3 皆為 10Ω , 則電流 |i| 之最大值為何?
 - (A)530 mA
- (B)265 mA
- (C)65 mA
- (D)20 mA
- (B) 16. 如圖所示之電路,假設二極體之壓降為 $0.7 \, \text{V}$,則二極體 D_2 之逆向峰值電壓 (PIV) 為何?
 - (A)20 V
- (B)39.3 V
- (C)41.4V
- (D)60.7 V




- (B) 17. 若 P-N 接面二極體之導通電壓為 $0.7\,\mathrm{V}$,且導通電阻值為 $0\,\Omega$,若 $\mathrm{Vi} = +5\,\mathrm{V}$,關於下列電路之敘述,何者正確?
 - (A)X 點電壓=5 V
 - (B)D2 電流為 2.15 mA
 - (C)Z 點電壓為 4.3 V
 - (D)Y 點電壓為 0 V


(C) 18. 如圖所示理想二極體電路,下列何者為其電壓轉移特性? (其中 m 表斜率)

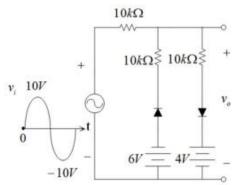

(A)


(B)

(C)

(D)

(C) 19. 如圖所示之電路,假設二極體為理想,試求輸出電壓


之最大正值為何?

(A)1 V

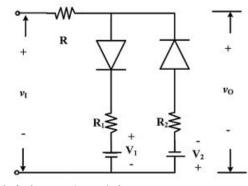
(B)4V

(C)7 V

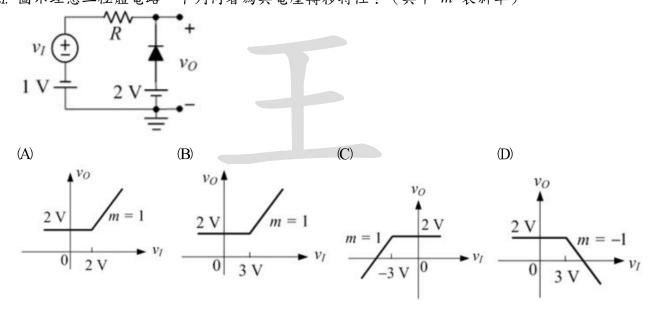
(D)10 V

^{表光} 保成 保成 學儒 全方位智慧服務系統

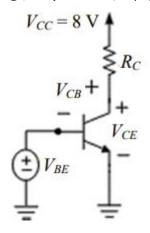
線上.線下給您最強大的支援


(C) 20. 如圖電路,設二極體均為理想二極體, $R=10~k\Omega$, $R_1=R_2=5~k\Omega \ , \ V_1=V_2=5~V \ , \ \ \,$ 當 $v_I=8~V$ 時, v_O 為 多大?

(A)0


(B)3 V

(C)6V


(D)8V

(B) 21. 圖示理想二極體電路,下列何者為其電壓轉移特性? (其中 m 表斜率)

(A) 22. 電路上某 npn 雙極性接面電晶體 (BJT) 工作在飽和區 (Saturation Region),已知電路 之電源電壓 為 8V,下列何者正確?

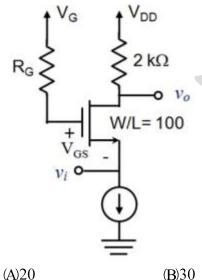
(A) $V_{CE} = 0.2 \text{ V}$

 $(B)V_{CE} = 8 \text{ V}$

 $(C)V_{CB} = 0.7 \text{ V}$

(D) $V_{CB} = 2.1 \text{ V}$

(B) 23. 某 $\beta=100$ 之 npn 雙極性接面電晶體,若 $I_B=10~\mu\mathrm{A}$,下列何者顯示電晶體工作在飽和 區 (Saturation Region) ?


 $(A)I_C = 1 \text{ mA} \cdot I_E = 1.01 \text{ mA}$

 $(B)I_C = 0.5 \text{ mA} \cdot I_E = 0.51 \text{ mA}$

 $(C)I_C = 1.01 \text{ mA} \cdot I_E = 1 \text{ mA}$

 $(D)I_C = 0.8 \text{ mA} \cdot I_E = 0.79 \text{ mA}$

(A) 24. 假設電晶體操作於飽和區,如圖所示共閘極放大器之增益 (vo/vi)為何?電晶體之 μnCox = 500 μ A/V² , W/L = 100 , V_{TH} = 0.6 V , V_{GS} = 0.8 V \circ

(C)40

(D)50

(D) 25. 於積體電路設計中使用主動負載的放大器,相對於使用被動負載,其好處不包含下列何 者?

(A)面積較小

(B)可同時當成電流源偏壓

(C)負載上的壓降較小

(D)頻寬增加

(D) 26. 下列何種放大器組態有較顯著的米勒效應?

(A)共閘極放大器

- (B)共集極放大器
- (C)共基極放大器
- (D)共源極放大器

(D) 27. 雙極性電晶體 (BJT) 若工作在截止區時:

(A)基射極接面、基集極接面都順偏

(B)基射極接面順偏、基集極接面逆偏

(C)基射極接面逆偏、基集極接面順偏

(D)基射極接面、基集極接面都逆偏

(C) 28. 矽雙極性電晶體 (BJT) 工作在飽和區模式時,其基射極之間的電位差約為:

(A)0.2 V

(B)0.3 V

(C)0.7 V

(D)1V

超級有保障

一次準備,免學費輔導至考取

超高CP值

班系眾多軟硬體資源免費使用

超快速考取

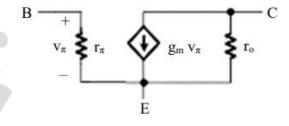
擁有全國最多快速考取實力

超級有誠意

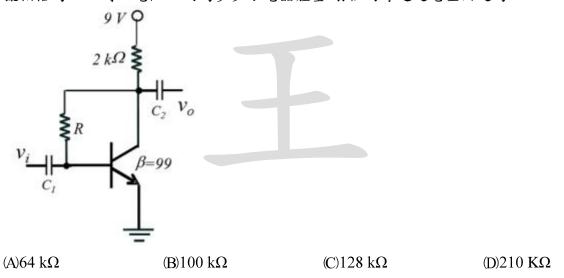
第一年考取頒發獎學金

超多重組合

可依照考試選擇考取方案

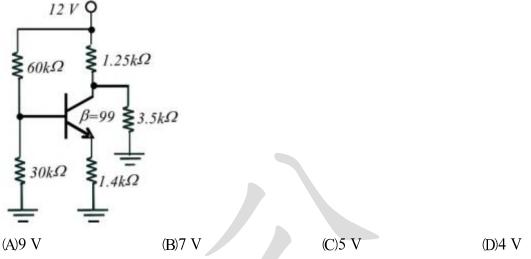

- ✔ 沒有把握一次必上
- ✓ 想要再接再勵連續考取
- ✔ 想要達成「不只求有 更要求好」終極目標

絕對是你 最好的選擇 **↑ ↑**

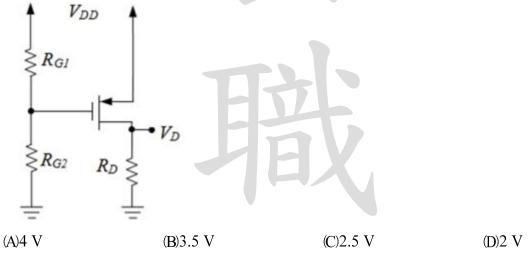

(A) 29. 關於雙載子電晶體(BJT)的小信號模型, 下列敘述何者錯誤?

(A)在特定 β 的條件下, r_{π} 與偏壓電流成正比

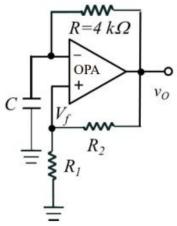
- (B)在特定 β 的條件下, gm 與偏壓電流成正比
- (C)在特定元件大小的條件下,ro與偏壓電流成反比
- (D)對共射級放大器而言,r_π越大則輸入阻抗越大



(C) 30. 圖示為一種採用集極回授偏壓電路的電晶體共射極放大器,輸出電壓(vo)正半週的最大擺幅恰為5V時,電阻R約為多少?電晶體基-射極的導通定電壓固定為0.8V。



(111 初等考) 公職王歷屆試題


(B) 31. 如圖採用分壓偏壓電路的電晶體放大電路中,在集極端直接耦接有一 $3.5~k\Omega$ 的負載,電 晶體基-射極的導通定電壓為 0.8 V 下, 求該電晶體於集極端的電壓約為多少?

(C) 32. 圖示 PMOS 場效電晶體電路,電晶體之 $V_t = -0.5~{
m V}$,若 $R_{GI} = 3~{
m M}\Omega$ 、 $R_{G2} = 2~{
m M}\Omega$ 、 $V_{DD} = 5 \, \mathrm{V}$,欲電晶體在飽和區工作,電壓 V_D 的最大值應為若干伏特?

(C) 33. 如圖所示的方波產生電路在正常工作下並於某個時間點測知 Vf 的電壓值為 8 伏特,此 電路中流過電 阻器 R 的電流絕對值取其最大與最小值分別以 I_1 和 I_2 (單位 mA)表示 之,則下列那一敘述為正確?其中施加於理想 OPA 之電壓為 ± 16 V。

 $(A)I_1 = 8 \text{ mA}$

(B) $I_2 = 4 \text{ mA}$

 $(C)I_1+I_2=8 \text{ mA}$ $(D)I_1-I_2=2 \text{ mA}$

(D) 34. 有關運算放大器的應用,下列電路何者使用負回授電路?

(A)比較器

(B)史密特觸發電路(Schmitt trigger)

(C)無穩態電路(Astable)

(D)電壓隨耦器

志光×保成×學儒

了15大環狀學習

為您快速敲開公職大門

服務架構

全國第1 輔考資源 最齊全

面授學習

數位學習

課程隨選隨看 名師任你欽點

在家學習

在家輕鬆補課 學習更不受限

WIFI補課

免排隊免預約 學習更有效率

函授學習

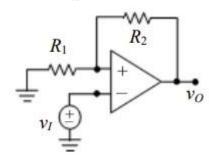
在家雲端上課 學習便利有效

師資多元 旁聽制度 筆記借閱 隨堂班導 補課系統

平時測驗 申論批改 全國模考 落點分析 班級讀書會

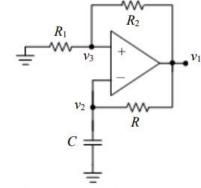
考取經驗傳承 時事專題講座 考生關懷講座 考取自修教室 手機APP系統

(C) 35. 某電路之轉移函數: $T(s) = 10 \frac{s}{s+10}$,當角頻率為 10 rad/sec 時,相角為何?

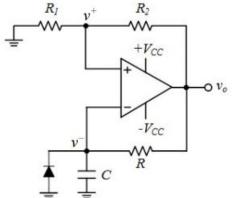

 $(A)-90^{\circ}$

- (B)-45°
- (C)45°
- (C) 36. 圖示 MOS 電路, v_i 為輸入電壓, v_o 為輸出電壓,本電路主要作用為何?
 - (A)調諧放大
 - (B)高通放大
 - (C)差動放大
 - (D)峰值偵測

- $(D)90^{\circ}$ V_{i} V_{i}
- (A) 37. 圖示為理想運算放大器組成的電路,運算放大器的輸出飽和電壓為 $\pm 12 \text{ V}$, $R_I = 10 \text{ k}\Omega$ 、 $R_2 = 40 \text{ k}\Omega$,輸出電壓 v_O 原為 -12 V ,輸入電壓 v_I 為下列何電位時,輸出 v_O 將為 +12 V ?
 - (A)-3V
- (B)-2 V


(C)2 V

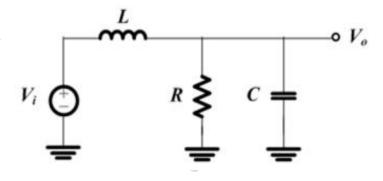
(D)3 V



(111 初等考) 公職王歷屆試題

- (D) 38. 有關圖示電路中各節點電壓的波形敘述,下列何者正確?
 - (A)v₁ 為弦波
- (B)v₂ 為方波
- (C)v3 近似為三角波 (D)v3 的振幅較 v1 為小

- (B) 39. 如圖電路,已知輸出 v_o 的飽和電壓在 $\pm 10 \text{ V}$,其 $R_1 =$ $100 \text{ k}\Omega$, $R_2 = 1 \text{ M}\Omega$;若在電容器 C 旁邊並接一顆二 極體,其順向電壓為 0.7 V,則輸出電壓 vo會在什麼 狀態?
 - (A)保持在 -0.7 V
- (B)保持在 -10 V
- (C)保持在 + 10 V
- (D)保持在 ±10 V 之間變化



(B) 40. 如圖二階低通濾波電路, 欲實現具有最大平坦度且 3 dB 頻率為

 $7.07 \times 10^5 \text{ rad/s}$,

當電阻 R 為 $5 k\Omega$ 時, 所需的電容 C 值為何?

- (A)100 pF
- (B)200 pF
- (C)500 pF
- (D)707 pF

