113 年特種考試地方政府公務人員考試試題

等 別:三等考試

類 科:經建行政、農業行政

科 目:統計學

吳迪老師解題

- 一、假設全體國民血液中鈉離子的濃度接近常態分布,其平均值(μ)為 140milliequivalents per liter (mEq/L),標準差(σ)為 3.5,請回答下列問題:(每小題 10分,共 20分)
 - (→)假設今隨機抽樣 25 位民眾測其血液中鈉離子,請問這 25 位民眾血液中鈉離子的平均濃度高於 140.5 mEq/L 的機率約為何?
 - □在母體的標準差(σ)未知情形下,假設今隨機抽樣25名民眾,其樣本的標準差(s)為5。 請問這25位民眾血液中鈉離子的平均濃度介於138~142 mEq/L 之間的機率為何?

【擬答】:

$$(-) P(\overline{X} > 140.5) = P(Z > \frac{140.5 - 140}{3.5}) = P(Z > 0.71) = 0.2389$$

$$(\Box) \ P(138 \le \overline{X} \le 142) = \ P(\frac{138 - 140}{5} \le t_{(24)} \le \frac{142 - 140}{5}) = \ P(-2 \le t_{(24)} \le 2) = \ 0.95$$

二、令隨機變數 X1, ..., Xn 彼此獨立且具有相同分配:

$$f(x) = \theta x^{\theta-1}, 0 \le x \le 1, 0 < \theta < \infty$$

請回答下列問題:(每小題10分,共20分)

- (-)試求 θ 的最大概似估計子 (MLE)。
- (二)試求題(一)估計子的一階動差。

【擬答】:

 $(-)(X1, X2, ..., X_n) \stackrel{iid}{\sim} f(X : \theta)$

1.
$$L(\theta) = \prod_{i=1}^{n} f(X_i; \theta) = (\theta x_1^{\theta-1})(\theta x_2^{\theta-1})x - x(\theta x_n^{\theta-1}) = \theta^n(x_1 \cdot x_2 \cdot \dots \cdot x_n)^{\theta-1}$$

2.
$$\ln L(\theta) = \ln [\theta^{n}(x_{1} \cdot x_{2} \cdot \dots \cdot x_{n})^{\theta-1}] = \ln \theta + (\theta - 1) \sum_{i=1}^{n} (\ln x_{i})$$

$$3. \frac{\partial \ln L(\theta)}{\partial \theta} = \frac{n}{\theta} + \sum_{i=1}^{n} (\ln x_i) = 0 \rightarrow \theta = -\frac{n}{\sum_{i=1}^{n} (\ln x_i)}, \text{ If } \frac{\partial^2 \ln L(\theta)}{\partial \theta^2} = -\frac{n}{\theta^2} < 0$$

$$\therefore \hat{\theta}_{\text{MLE}} = -\frac{n}{\sum_{i=1}^{n} (\ln x_{i})}$$

$$(\Box) \ E(X) = \int \times f(x) dx = \int_0^1 x \cdot \theta \, x^{\theta - 1} dx = \int_0^1 \theta \, x^{\theta} dx = \frac{\theta}{\theta + 1} x^{\theta + 1} \Big|_{x = 0}^{x = 1} = \frac{\theta}{\theta + 1}$$
 由 MLE 的不變性

$$E(X) = \frac{\theta}{\theta + 1} = \frac{-\frac{n}{\sum_{i=1}^{n} (\ln x_i)}}{-\frac{n}{\sum_{i=1}^{n} (\ln x_i)} + 1} = \frac{n}{n - \sum_{i=1}^{n} (\ln x_i)}$$

三、陳老師為了解創新教學方法是否能提升學生學習成效,於是他針對課堂7位學生,分別記錄使用創新教學方法前及使用創新教學方法後的測驗成績,成績越高代表學習成效越好,資料如下:

學生	1	2	3	4	5	6	7
使用前	84	72	61	78	83	86	71
使用後	90	86	72	80	85	88	80

在 0.05 的顯著水準下,請利用 p 值法檢定是否創新教學方法會提高學生學習成效? (15 分)

【擬答】:

使用前(X)	84	72	61	78	83	86	71
使用後(Y)	90	86	72	80	85	88	80
D = X - Y	_	_	_	_	_		_

$$\begin{cases}
\mathbf{H}_{0} : \ \boldsymbol{\eta}_{1} \geq \boldsymbol{\eta}_{2} \\
\mathbf{H}_{1} : \ \boldsymbol{\eta}_{1} < \boldsymbol{\eta}_{2}
\end{cases}$$

$$\alpha = 0.05$$

$$D(+) = 0 \cdot D(-) = 7 \cdot n = 7$$

$$S = min\{D(+), D(-)\} = 0$$

⇒p-value =
$$P(X \le S) = P(X \le 0) = C_0^7 (\frac{1}{2})^7 = 0.0078125 < 0.05 = \alpha \rightarrow ReH_0$$

結論:有證據顯示創新教學方法會提高學生學習成效

四、使用了三種肥料後農作物的生長高度 (cm),如下表所示:

A	В	С
20	27	21
27	24	17
26	21	20
24	25	22

請建立 ANOVA 表,並在顯著水準 0.1 下檢定三種肥料對農作物的平均生長高度是否不同?(15分)

【擬答】:

<i>~</i>		•	•	
		A	В	C
		20	27	21
		27	24	17
		26	21	20
		24	25	22
	和	97	97	80
		\mathbf{T}_1	T_2	T_2

共7頁 第2頁

全國最大公教職網站https://www.public.com.tw

$$T..=97 + 97 + 80 = 274$$

$$\sum \sum x_{ii}^2 = 6336$$

$$n_1 = n_2 = n_3 = 4$$
, $N = 12$

$$(-)$$
 SST = $\sum \sum x_{ij}^2 - \frac{T..^2}{N} = 6366 - \frac{274^2}{12} = 109.67$

$$(\vec{x}) SSTR = \sum \frac{T_i.^2}{n_i} - \frac{T..^2}{N} = (\frac{97^2}{4} + \frac{97^2}{4} + \frac{80^2}{4}) - \frac{274^2}{12} = 48.17$$

$$(\Xi)$$
 SSE = SST - SSTR = 61.5

ANOVA 表

來源	SS	df	MS	F值
組間	48.17	2	24.085	F = 3.52
組內	61.5	9	6.833	
總變異	109.67	11		

 $\int \mathbf{H}_0: \ \boldsymbol{\mu}_1 = \boldsymbol{\mu}_2 = \boldsymbol{\mu}_3$

 $H: \mu$ 不全相同,i=1,2,3

 $\alpha = 0.1$

拒絕域 C = {F | F > F_{0.1}(2.9) = 3.0065}

 $F = 3.52 \in C \rightarrow ReH_0$

結論:有證據顯示三種肥料對農作物的平均生長高度不同

五、醫藥人員想了解服藥的藥量(X)與藥效維持時間(Y)的關係,於是記錄 8 位病人服藥的結果如下:

X	2	3	4	2	5	1	3	4
Y	20	20	60	25	75	10	40	60

- ─試用最小平方估計法(LSE)建立一迴歸方程式,來描述藥量對藥效維持時間的影響。(10分)
- □在 0.05 的顯著水準下,檢定藥量對藥效維持時間是否有顯著的影響。(15 分)
- (三)此迴歸模型的解釋能力如何?(5分)

【擬答】:

$$(-)\sum X = 24 \cdot \sum X^2 = 84 \cdot \sum Y = 310 \cdot \sum Y^2 = 15950 \cdot \sum XY = 1135$$

$$\hat{\mathbf{Y}} = \hat{\alpha} + \hat{\beta} \mathbf{X}$$

1.
$$\hat{\beta} = \frac{\text{SSXY}}{\text{SSX}} = \frac{\sum XY - \frac{(\sum X)(\sum Y)}{n}}{\sum X^2 - \frac{(\sum X)^2}{n}} = \frac{1135 - \frac{24 \times 310}{8}}{84 - \frac{24^2}{8}} = 17.08$$

$$2.\ \hat{\alpha} = \overline{Y} - \hat{\beta}\overline{X} = \frac{310}{8} - 17.08 \times \frac{24}{8} = -12.49 \rightarrow \hat{Y} = -12.49 + 17.08X$$

$$(\Box) \begin{cases} \mathbf{H}_{\scriptscriptstyle 0} : \beta = 0 \\ \mathbf{H}_{\scriptscriptstyle 1} : \beta \neq 0 \end{cases}$$

$$\alpha = 0.05$$

SSX =
$$\sum X^2 - \frac{(\sum X)^2}{n} = 84 - \frac{24^2}{8} = 12$$

MSE =
$$\frac{\text{SSE}}{\text{n}-2} = \frac{\sum Y^2 - \hat{\alpha} \sum Y - \hat{\beta} \sum XY}{\text{n}-2} = \frac{15950 - (-12.49) \times 310 - 17.08 \times 1135}{8-2} = 72.68$$

檢定統計量

$$t = \frac{\hat{\beta} - \beta}{\sqrt{\frac{MSE}{SSX}}} = \frac{17.08 - 0}{\sqrt{\frac{72.68}{12}}} = 6.94 \in C \rightarrow ReH_0$$

結論:有證據顯示藥量對藥效維持時間有顯著的影響

$$(\Xi)$$
 SST = SSY = $\sum Y^2 - \frac{(\sum Y)^2}{n} = 15950 - \frac{310^2}{8} = 3937.5$

$$SSR = \hat{\beta}^2 SSX = 17.08^2 \times 12 = 3500.7168$$

解釋力
$$R^2 = \frac{SSR}{SST} = \frac{3500.7168}{3937.5} = 0.8891 = 88.91\%$$

クスプロチェニー 面授 + 視訊 + 函授 開啟上榜三效模式

★6期分期0利率

- ★面授 / 視訊 / 雲端函授 自由選
- ★優惠最低85折(持金+&尊榮優惠可再享折扣) ★提供 正規班+總複習 CP值最高

年

自選面授or視訊 or雲端函授課程

超強 ▼ 第一年考取退學費

扣除第一年學費& 第二年已使用教材費

返班選擇適合學習模式

方案一 ▶ 到班學習

升級 面授or視訊考取班

> 安心專注 一次繳費輔導至考取

隔年起 僅繳交教材換證費 方案二 ▶ 雲端學習

函授 年度正規班

便利自主

輔考至該年度考試前

享有申論批改與 超級解惑王APP上榜資源

志光×學儒×保成 · · •

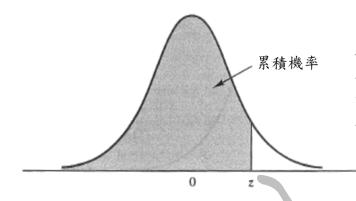
上榜单唯一指

效率考取關鍵

全國狀元 雙料金榜

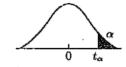
113高考統計狀元 林〇凱

統計學老師上課嚴謹並有條理的介紹統計觀 念和公式,將抽象內容用較生活化或白話的 解釋讓我們理解其中含義,以及大量題目的 練習,將內容量很龐大且是我們本組最重要 的統計學,變成我們能在考場上感到得心應 手的專業科目。我本身不太會寫作文,經由 老師批改後,老師會建議我可以舉哪些例子 來增加文章的說服力和深度廣度。


全國狀元 雙料金榜

113高考經建行政狀元 陳〇霖 113普考經建行政榜眼

財政學老師的課程生動有趣,總能將艱深的 理論與實際生活中的例子結合起來,讓我在 學習中感受到樂趣。統計學老師教學風格極 啟發性,能夠引導我們從不同的角度思考問 題,在他的指導下,我的解題能力有顯著提 升,這對於申論題的準備尤其重要。當我在 解題中遇到瓶頸時,老師的上課內容總能給 我提供寶貴的建議,讓我找到突破的方向。


附表一

表中的數值代表對應的 Z 值以左,標準常態曲線下方的面積。例如,Z=1.25,累積機率下 0.8944。

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9913
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9986	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990

t分配右尾百分點 $t_{\alpha}(df)$

	1	***	*		0.40.4	
df	.25	.1	.05	α .025	.01	.005
1	1.000	3.078	6.314	12.706	31.821	63,657
2	.816	1.886	2.920	4.303	6.965	9.925
3	.765	1.638	2.353	3.182	4.541	5.841
4	.741	1.533	2.132	2.776	3.747	4.604
. 5	.727	1.476	2.015	2.571	3.365	4.032
6	.718	1.440	1.943	2.447	3.143	3.707
7	.711	1.415	1.895	2.365	2.998	3.499
8	.706	1.397	1.860	2.306	2.896	3.355
9	.703	1.383	1.833	2.262	2.821	3.250
10	.700	1.372	1.812	2.228	2.764	3.169
11	.697	1.363	1.796	2.201	2.718	3.106
12	.695	1.356	1.782	2.179	2.681	3.055
13	.694	1.350	1.771	2.160	2.650	3.012
14	.692	1.345	1.761	2.145	2.624	2.977
15	.691	1.341	1.753	2.131	2.602	2.947
16	.690	1.337	1.746	2.120	2,583	2.921
17	.689	1.333	1.740	2.110	2.567	2.898
18	.688	1.330	1.734	2.101	2.552	2.878
19	.688	1.328	1.729	2.093	2.539	2.861
20	.687	1,325	1.725	2.086	2.528	2.845
21	.686	1.323	1,721	2.080	2.518	2.831
22	.686	1.321	1.717	2.074	2.508	2.819
23	.685	1.319	1.714	2.069	2.500	2.807
24	.685	1.318	1.711	2.064	2.492	2.797