113 年特種考試地方政府公務人員考試試題

考試別:地方政府公務人員考試 賴明老師解題

等 別:三等考試 類 科:土木工程 科 目:測量學

- 一、已知有 $A \times B \times C$ 三點,AB 兩點之水平距離=420.476 公尺,AC 兩點之水平距離=607.289 公尺, $\angle A = 47^{\circ}24'45''$,試求:
 - (一)BC 兩點之水平距離多少公尺? (10 分)
 - □∠B水平角為幾度幾分幾秒? (15 分)
 - 1.《考題難易》★★
 - 2. 《解題關鍵》關鍵字:水平距離、水平角。重點提要:餘弦定律、正弦定律。
 - 3. 《命中特區》

書名:土木 測量學

作者:賴明

章節出處:第一章 測量概論 之 第4節 測量基本計算與原理 之 一、測量之基本計算

【擬答】

已知: $\overline{AB} = c = 420.476m$, $\overline{AC} = b = 607.289m$, $\angle A = \alpha = 47^{\circ}24'45''$

假設: $\overline{BC} = a$, $\angle B = \beta$

(-)計算 BC 兩點之水平距離 $\overline{BC} = a$

由餘弦定律 $a^2 = b^2 + c^2 - 2bc \times \cos \alpha$

 $a^2 = 607.289^2 + 420.476^2 - 2 \times 607.289 \times 420.476 \times \cos 47^{\circ} 24^{\circ} 45^{\circ} = 200,000.8522$

$$a = \overline{BC} = 447.215m$$

二計算 $\angle B$ 水平角 $\angle B = \beta$

由正弦定律
$$\frac{b}{\sin \beta} = \frac{a}{\sin \alpha}$$
, $\sin \beta = \frac{b}{a} \sin \alpha$

$$\beta = \sin^{-1}\left(\frac{b}{a}\sin\alpha\right) = \sin^{-1}\left(\frac{607.289}{447.215} \times \sin 47^{\circ}24'45''\right) = 88^{\circ}46'42''$$

$$\therefore \overline{BC} = 447.215m , \angle B = 88^{\circ}46'42''$$

- 二、有一部全站儀在完成精密的定心與定平後,儀器平轉 180 度,發現水平度盤上的管狀水準器的氣泡偏移了 2 格,已知管狀水準器的靈敏度為 20 秒/每格,試問:
 - (一)儀器的那兩軸發生儀器誤差? (5 分)
 - (二)這兩軸發生儀器誤差多少秒?(10分)
 - (三)儀器如何校正?(10分)

1.《考題難易》★★★★

2.《解題關鍵》關鍵字:水準器的靈敏度、氣泡偏移、儀器平轉。重點提要:半半改正。

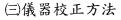
3.《命中特區》

書名:土木 測量學

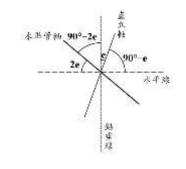
作者:賴明

章節出處:第三章 水準測量 之 八、水準儀的校正與整置

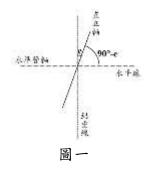
【擬答】

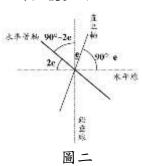

──説明儀器的那兩軸發生儀器誤差水準軸(水準管軸)與直立軸(垂直軸)

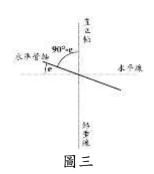
二這兩軸發生儀器誤差的角度


如圖。誤差 e= 管狀水準器的靈敏度為 20 秒/每格=20" 儀器平轉 180 度,直立軸與鉛垂線的夾角為 e=20" 這兩軸發生儀器誤差的角度 e=20"

水準軸(水準管軸)與水平線的夾角為 2e =40"


水準軸與直立軸的夾角為 90°- e =90°-20"=89°59'40"




假設:存在水準軸誤差

- 1. 調腳螺旋使氣泡居中:此時水準軸與垂線相垂直,但直立軸與垂線不重合,夾角為 e。如圖一所示。
- 2. 望遠鏡旋轉 180 度:水準儀繞直立軸水平旋轉 180 度,假設氣泡偏移 N 格。直立軸與垂線的 夾角 e 會導致水準軸與水平線的夾角為 2e。如圖二所示。
- 3. 調整水準儀腳螺旋,使氣泡向中央移動 $\mathbb{N}/2$ 格。此時,直立軸與垂線相重合,但水準軸與水平線的夾角為 e。如圖三所示。
- 4.調水準管校正螺旋,氣泡再向中央移動 N/2 格。此時,直立軸與垂線重合,水準軸與水平線 重合。因為,水平線垂直於垂線,所以,水準軸與直立軸相垂直。
- 5.再檢查,若未完全校正完善,則重覆步驟3,4。

- 三、已知有 A、B、C 三點,其原始坐標如下表第二、三欄,根據新的坐標系統,現地實測得到新坐標如下表第四、五欄,現地 C 點已經遺失,假設採用四參數法作平面坐標轉換,試問:
 - (一)四參數法的假設為何? (5 分)
 - □ 將原始坐標系統轉成新坐標系統的四參數法之參數為何? (10 分)
 - (三) C 點的新坐標系統坐標為何? (5 分)

四如何判斷上述四個參數的精度是否滿足 1/20000 精度的要求? (5 分)

	原始座標		新座標	
點號	橫坐標 X	縱坐標 Y	横坐標 X	縱坐標 Y
	(公尺)	(公尺)	(公尺)	(公尺)
A	100.000	100.000	200.005	300.010
В	200.000	200.000	300.010	400.000
C	150.000	300.000		

1.《考題難易》★★★★

- 2.《解題關鍵》關鍵字:平面坐標轉換、四參數法、精度要求。重點提要:方程式解算。
- 3.《命中特區》

書名:土木 測量學

作者:賴明

章節出處:第一章 測量概論 之 第6節 平面坐標系之坐標轉換

【擬答】

(一)四參數法的假設

- 1.轉換前後的形狀維持不變,即角度維持不變。
- 2.正交的坐標軸,轉換後仍維持正交。
- 3.有一個旋轉角度參數 θ
- 4.有一個比例參數 S,且雙軸的比例調整視為相同。
- 5. 有一組平移坐標參數(c,d)
- 6. 為平面坐標轉換
- □將原始坐標系統轉成新坐標系統的四參數法之參數

假設:原始坐標為(x,y),新坐標為(X,Y),亦即

	原始坐標		新坐標	
點號	横坐標 x	縱坐標 y	横坐標 X	縱坐標 Y
	(公尺)	(公尺)	(公尺)	(公尺)
A	100.000	100.000	200.005	300.010
В	200.000	200.000	300.010	400.000
С	150.000	300.000		

計算坐標轉換參數 a,b,c,d

由
$$\begin{cases} X = ax - by + c \\ Y = bx + ay + d \end{cases}$$
 将
$$\begin{cases} X_A = a \cdot x_A - b \cdot y_A + c \dots (1) \\ Y_A = b \cdot x_A + a \cdot y_A + d \dots (2) \\ X_B = a \cdot x_B - b \cdot y_B + c \dots (3) \end{cases}$$
 式(3)-(1) & 式(4)-(2) ,得
$$\begin{cases} \Delta X = a \cdot \Delta x - b \cdot \Delta y \\ \Delta Y = b \cdot \Delta x + a \cdot \Delta y \end{cases}$$
 解得
$$a = \frac{\Delta x \cdot \Delta X + \Delta y \cdot \Delta Y}{(\Delta x)^2 + (\Delta y)^2} \quad b = \frac{\Delta x \cdot \Delta Y - \Delta y \cdot \Delta X}{(\Delta x)^2 + (\Delta y)^2}$$

再代回 式
$$(1)$$
、式 (2) ,計算 c,d

$$\Delta X = \Delta X_{AB} = X_B - X_A = 100.005m$$
 $\Delta Y = \Delta Y_{AB} = Y_B - Y_A = 99.990m$

$$\Delta x = \Delta x_{AB} = x_B - x_A = 100.000m$$
 $\Delta y = \Delta y_{AB} = y_B - y_A = 100.000m$

$$a = \frac{\Delta x \cdot \Delta X + \Delta y \cdot \Delta Y}{(\Delta x)^2 + (\Delta y)^2} = \frac{100 \times 100.005 + 100 \times 99.990}{100^2 + 100^2} = 0.999975$$

$$b = \frac{\Delta x \cdot \Delta Y - \Delta y \cdot \Delta X}{(\Delta x)^2 + (\Delta y)^2} = \frac{100 \times 99.990 - 100 \times 100.005}{100^2 + 100^2} = -0.000075$$

再代回 式(1)、式(2),計算 c=100.000m, d=200.020m

$$\mathbb{E}_{p} : \begin{bmatrix} X \\ Y \end{bmatrix} = \begin{bmatrix} 0.999975 & 0.000075 \\ -0.000075 & 0.999975 \end{bmatrix} \times \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 100.000 \\ 200.020 \end{bmatrix}$$

(三)計算 C 點的新坐標系統之坐標

$$\begin{bmatrix} X_C \\ Y_C \end{bmatrix} = \begin{bmatrix} 0.999975 & 0.000075 \\ -0.000075 & 0.999975 \end{bmatrix} \times \begin{bmatrix} x_C \\ y_C \end{bmatrix} + \begin{bmatrix} 100.000 \\ 200.020 \end{bmatrix}$$

$$\begin{bmatrix} X_C \\ Y_C \end{bmatrix} = \begin{bmatrix} 0.999975 & 0.000075 \\ -0.000075 & 0.999975 \end{bmatrix} \times \begin{bmatrix} 150 \\ 300 \end{bmatrix} + \begin{bmatrix} 100.000 \\ 200.020 \end{bmatrix} = \begin{bmatrix} 250.041 \\ 500.001 \end{bmatrix}$$

$$\begin{bmatrix} X_C \\ Y_C \end{bmatrix} = \begin{bmatrix} 0.000075 & 0.999975 \end{bmatrix} \times \begin{bmatrix} 100 \\ 300 \end{bmatrix} + \begin{bmatrix} 100.000 \\ 200.020 \end{bmatrix} = \begin{bmatrix} 200.001 \\ 500.001 \end{bmatrix}$$

$$(X_C, Y_C) = (250.041m, 500.001m)$$

四判斷上述四個參數的精度是否滿足 1/20000 精度的要求

如四個參數取至小數點以下 3 位,即 a=1.000,b=0.000, C,點概略坐標

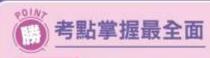
$$\begin{bmatrix} X_C \\ Y_C \end{bmatrix} = \begin{bmatrix} 1.000 & 0.000 \\ -0.000 & 1.000 \end{bmatrix} \times \begin{bmatrix} 150 \\ 300 \end{bmatrix} + \begin{bmatrix} 100.000 \\ 200.020 \end{bmatrix} = \begin{bmatrix} 250.000 \\ 500.020 \end{bmatrix}$$

A,C 二點距離
$$\overline{AC} = \sqrt{(250.041 - 200.005)^2 + (500.001 - 300.010)^2} = 206.155m$$

A,C'二點距離
$$\overline{AC} = \sqrt{(250.000 - 200.005)^2 + (500.020 - 300.010)^2} = 206.164m$$

距離差異 $\Delta = 206.164 - 206.155 = 0.009m$

精度 =
$$\frac{\Delta}{\overline{AC}}$$
 = $\frac{0.009}{206.155}$ = $\frac{1}{\frac{206.155}{0.009}}$ = $\frac{1}{22,900}$ < $\frac{1}{20,000}$,可满足 1/20000 精度的要求


志光×學儒×保成

虚實整合 引你入勝 ↓ ※∅

學習等時期 | 問題科各研別, 格可問步直播上舞 . 服務零死角 | 服務緊貼需求, 隨時掌握學習狀況

考前、考中及考後、哲享有 志光、學儒、保成專業服務

線上即時解答

依各區規劃為主・諸治全國門市

四、試比較衛星定位測量與傳統地面測量在下列項目之差異為何? 1. 通視要求、 2. 觀測時間、 3. 選點位置、 4. 所得數據、 5. 天候條件。 (25 分)

1.《考題難易》★★★

2. 《解題關鍵》關鍵字:衛星定位測量、傳統地面測量。重點提要:差異比較。

3.《命中特區》

書名:土木 測量學

作者:賴明

章節出處:第八章 衛星定位測量 之 十一、GPS 與傳統測量之差異

【擬答】

衛星定位測量與傳統地面測量之比較表

序號	比較項目	衛星定位測量	傳統地面測量
1	通視要求	需要透空。 接收儀能觀測衛星訊號。	測站與已知點及未知點之間,需要 能夠通視。
2	觀測時間	任何時間	有光線的時間。能夠清晰地照準目 標(覘標或標桿)。
3	選點位置	1.鄰近測站的環境需要單純,不要 有高樓大廈或是複雜的樹林。 2.容易引起多路徑效應的點位,不 宜選點。	1.相鄰點位之間,須能相互通視。 2.密度要均勻,點數不宜過多,以 便能有效控制導線精度。 3.易於埋設、尋找和架設儀器且不 易被壞之處。
4	所得數據	測站與衛星的距離。 載波相位觀測量、虛擬距離觀測 量。	1. 三維坐標測量:斜距、天頂距 (或是垂直角)、水平角。 2. 平面測量:距離(邊長)、水平角 3. 水準測量:後視讀數、前視讀數
5	天候條件	不受天候狀況影響作業。	1. 中午前後,氣溫高,地面溫度 高,不宜觀測。 2. 雨霧等天候不佳時,不宜觀測。

